Higher gradient integrability for σ -harmonic maps in two dimensions

Mariapia Palombaro^{*1}

¹Department of Mathematics [Sussex] – University of Sussex Sussex House Brighton BN1 9RH United Kingdom, Royaume-Uni

Résumé

I will present some results concerning the higher gradient integrability of σ -harmonic functions u with discontinuous coefficients σ , i.e., weak solutions of div $(\sigma \nabla u) = 0$. When σ is assumed to be symmetric, then the optimal integrability exponent of the gradient field is known thanks to the work of Astala and Leonetti & Nesi. I will discuss the case when only the ellipticity is fixed and σ is otherwise unconstrained and show that the optimal exponent is attained on the class of two-phase conductivities $\sigma : \Omega \subset \mathbb{R}^2 \to {\sigma_{-1}, \sigma_{-2}} \subset \mathbb{M}^2 \times 2$. For such a class we also characterise the minimal exponent $q \in (1, 2)$ and the maximal exponent p > 2 such that if $\nabla u \in L^q$ then $\nabla u \in L^p$ -weak. (Joint work with Nesi & Ponsiglione and S. Fanzon.)

^{*}Intervenant