Higher gradient integrability for σ-harmonic maps in two dimensions

Mariapia Palombaro*1
${ }^{1}$ Department of Mathematics [Sussex] - University of Sussex Sussex House Brighton BN1 9RH United Kingdom, Royaume-Uni

Résumé

Abstract

I will present some results concerning the higher gradient integrability of σ-harmonic functions u with discontinuous coefficients σ, i.e., weak solutions of $\operatorname{div}(\sigma \nabla \mathrm{u})=0$. When σ is assumed to be symmetric, then the optimal integrability exponent of the gradient field is known thanks to the work of Astala and Leonetti \& Nesi. I will discuss the case when only the ellipticity is fixed and σ is otherwise unconstrained and show that the optimal exponent is attained on the class of two-phase conductivities $\sigma: \Omega \subset \mathrm{R}^{\wedge} 2 \rightarrow\left\{\sigma_{-} 1, \sigma_{-} 2\right\} \subset \mathrm{M}^{\wedge} 2 \times 2$. For such a class we also characterise the minimal exponent $\mathrm{q} \in(1,2)$ and the maximal exponent p > 2 such that if $\nabla \mathrm{u} \in \mathrm{L}^{\wedge} \mathrm{q}$ then $\nabla \mathrm{u} \in \mathrm{L}^{\wedge}$ p_weak. (Joint work with Nesi \& Ponsiglione and S. Fanzon.)

[^0]
[^0]: *Intervenant

