Universal dynamics for the logarithmic Schrödinger equation
Isabelle Gallagher  1@  
1 : Institut de Mathématiques de Jussieu  (IMJ-PRG)  -  Site web
CNRS : UMR7586, Université Pierre et Marie Curie (UPMC) - Paris VI, Université Paris VII - Paris Diderot
2, place Jussieu 75251 Paris Cedex 05 -  France

We shall consider the Schrödinger equation with a logarithmic nonlinearity and show that this type of nonlinearity affects strongly the long time behaviour of the solution : the dispersion is faster, by a logarithmic factor, than the dispersion of the free equation, and the solutions behave asymptotically, in modulus, according to a universal Gaussian profile.

This corresponds to a joint work with Rémi Carles.


Personnes connectées : 1